TOTAL SYNTHESIS OF THROMBOXANE B2¹ Norman A. Nelson* and Robert W. Jackson Experimental Chemistry Research, The Upjohn Company, Kalamazoo, Michigan 49001, USA

(Received in USA 3 June 1976; received in UK for publication 26 July 1976)

The cascade of events by which arachidonic acid is converted to the prostaglandin endoperoxide PGG₂ and thence to primary and secondary prostaglandins, their metabolites and other substances has been elucidated and vigorously exploited for over a decade.² The brilliant work of Hamberg, Svensson and Samuelsson has now revealed that PGG₂ can sire the formation of a new type of short lived, but extremely potent substance called thromboxane A₂ (TXA₂).^{2,3} This substance, with a half life of about 30 seconds in aqueous solution, exerts a profound effect on certain smooth muscles and cells, and appears to be an important early factor in thrombosis. Thromboxane A₂ is rapidly converted to thromboxane B₂ (TXB₂), of which little has been reported regarding its biological profile.³

As an aid for the biological evaluation of thromboxanes, we have devised a method, reported herein, for the synthesis of thromboxane B_2 which involves intermediates (e.g., <u>11</u>) of broad utility for the synthesis of analogs.

Treatment of $\underline{1}^4$ with Florisil (ethyl acetate, 25°, 16 hr) and chromatography on Florisil yielded $\underline{2}^5$ (74%, mp 72-73.5°). Reduction of $\underline{2}$ with sodium borohydride in methanol afforded the corresponding alcohol which was converted to the p-phenylbenzoate derivative (93% from $\underline{2}$, mp 84-85°).⁶ The ester was hydroxylated in near quantitative yield with osmium tetroxide-N-methylmorpholine N-oxide⁷ to give a mixture of two <u>cis</u> glycols (<u>3</u>) (isomer A, mp 166-167°; isomer B, mp 144-146°) either one of which, or the mixture, was cleaved with paraperiodic acid (1.5 equiv., pyridine and aqueous methanol, 0°, 15 min) to the aldehyde-ketone <u>4</u>. Due to the fragile nature of <u>4</u>, it was reduced directly with sodium borohydride to a mixture of diols which was separated by chromatography on silica gel. The major isomer (60%; mp 135-136°; R_f 0.31, 3:7 acetone-methylene chloride) corresponds to structure <u>5</u>. We plan to recycle the minor

isomer (11%; mp 159-160°; R_f 0.39) through an oxidation-reduction sequence to give additional 5. Selective oxidation of the primary alcohol of 5 was achieved indirectly by first preparing the bis(trimethylsilyl ether) derivative 6 (R_f 0.87, 1:1 ethyl acetate-hexane) and subjecting 6 to a Collins' oxidation.⁸,⁹ The intermediate 7, on treatment with methanolic acetic acid, afforded 8 (mp 176-177.5°) while treatment of 7 or 8 with 0.25 N methanolic hydrochloric acid yielded a mixture of methyl acetals 9 (56% from 5) which were readily separated by chromatography on silica gel. The structures of the isomeric acetals were readily discernable from pmr spectral data¹⁰ [9, β-isomer; 10%; R_f 0.49, 1:1 ethyl acetate-hexane; characteristic methoxyl singlet at 3.496 (CDCl₃): 9, α-isomer; 46% mp 149.5-150°; R_f 0.36; methoxyl singlet at 3.386]. Treatment of each isomeric acetal ester 9 with 0.1 N methanolic sodium methoxide (25°, 25 min) yielded the corresponding alcohol 10¹¹ (α-OCH₃; 77%; R_f 0.42, 3:7 acetone-methylene chloride: β-OCH₃; 85%; R_f 0.48).

Oxidation of <u>10</u> (α -OCH₃) with Collins' reagent⁸ proceeded with difficulty¹² and the intermediate <u>11</u> was treated directly with the ylide prepared from dimethyl 2-oxoheptylphosphonate and potassium <u>t</u>-butoxide in tetrahydrofuran to afford <u>12</u> (α -OCH₃; 22% from <u>10</u>; R_f 0.51, 1:1 ethyl acetate-hexane). The remaining steps in the sequence followed published procedures¹³ and involved 1) reduction of <u>12</u> with zinc borohydride in 1,2-dimethoxyethane to give <u>13</u> (89%), 2) reduction of <u>13</u> with diisobutylaluminum hydride in toluene to give <u>14</u> (95%), 3) treatment of <u>14</u> with the ylide prepared from 4-carboxybutyltriphenylphosphonium bromide and sodium methylsulfinylcarbanide in DMSO to give <u>15a</u> and <u>15b</u> which were separated by chromatography on SilicAR CC-4 silica gel with 1:1 ethyl acetate-hexane [<u>15a</u>; 34%; R_f 0.73 in 3:1 ethyl acetate-hexane containing 1% acetic acid: <u>15b</u>; 22%; R_f 0.62: and 22% of a mixture of <u>15a</u> and <u>15b</u>].

Pfitzner-Moffatt oxidation¹⁴ of <u>10</u> (β -OCH₃) proceeded normally to give <u>11</u> which was converted to <u>12</u> (β -OCH₃; 54% from <u>10</u>; R_f 0.58, 1:1 ethyl acetate-hexane) and this material was carried on to a mixture of <u>15c</u> and <u>15d</u> which were separated as their methyl esters by chromatography on silica gel. Saponification of the methyl esters afforded the pure isomers <u>15c</u> (27% from <u>12</u>; R_f 0.69 in 1:99 acetic acid-ethyl acetate) and <u>15d</u> (29% from <u>12</u>; R_f 0.63).

Hydrolysis of <u>15b</u> or <u>15d</u> (85% phosphoric acid:water:tetrahydrofuran 1:10:10; 40°; 6 hr) yielded thromboxane B₂ (80%; mp 89-90°; R_f 0.40 in 1:99 acetic acid-ethyl acetate: reference R_f 0.27 for PGE₂) which is identical to naturally occurring TXB₂ by thin-layer chromatographic comparisons in a variety of systems. On treatment of natural and synthetic TXB₂ with diazomethane followed by bis(trimethylsilyl)trifluoroacetamide, identical bis- and tris(trimethylsilyl ether) methyl ester derivatives were formed as ascertained by gas chromatography-mass spectrometry.

ACKNOWLEDGMENT

We are indebted to B. Samuelsson and E. Granström and also to R. Gorman, F. Sun and R. C. Kelly of these laboratories for samples of natural thromboxane B_2 and to F. Sun and L. Baczynskyj for the gas chromatographic-mass spectral comparisons of natural and synthetic thromboxane B_2 . Our indebtedness also extends to H. A. Karnes for supplying the optically active starting material and to S. Mizsak for helpful discussions regarding pmr spectra.

REFERENCES AND NOTES

- See accompanying papers on thromboxane B₂ synthesis by R. C. Kelly, I. Schletter and S. J. Stein and by W. P. Schneider and R. A. Morge.
- 2. For a review see, "Advances in Prostaglandin and Thromboxane Research," Vol. 1, edited by B. Samuelsson and R. Paoletti, Raven Press, New York, N. Y., 1976.
- 3. M. Hamberg, J. Svensson and B. Samuelsson, Proc. Nat. Acad. Sci. USA, 72, 2994 (1975).
- 4. E. W. Yankee, U. Axen and G. L. Bundy, J. Am. Chem. Soc., 96, 5865 (1974).
- 5. <u>Cf.</u> R. C. Kelly, I. Schletter and R. L. Jones, <u>Prostaglandins</u>, 4, 653 (1973); P. Crabbé and A. Cervantes, Tetrahedron Lett., 1319 (1973); and Reference 3.
- 6. All compounds described herein were obtained as chromatographically homogeneous samples and had infrared, pmr and mass spectral data consistent with their assigned structures. Solids had acceptable elemental analyses. R_f data were obtained on silica gel GF plates. No attempt has been made to maximize yields.
- 7. V. VanRheenen, R. C.Kelly and D. Y. Cha, Tetrahedron Lett., 1973 (1976).
- 8. R. Ratcliffe and R. Rodehorst, J. Org. Chem., 35, 4000 (1970).
- 9. Further work is in progress on the selective oxidation of primary trimethylsilyl ethers.
- Excellent pmr data for model compounds are available; R. U. Lemieux, A. A. Pavia, J. C. Martin and K. A. Watanabe, Can. J. Chem., <u>47</u>, 4427 (1969).
- 11. Our α -OCH₃ isomer of <u>10</u> has identical IR and NMR spectra and TLC mobility characteristics as the corresponding compound <u>11</u> described by R. C. Kelly, <u>et.al</u>.; reference 1.
- 12. The Pfitzner-Moffatt oxidation of this compound proceeds in about 55% yield, private communication, R. C. Kelly.
- E. J. Corey, N. M. Weinshenker, T. K. Schaaf and W. Huber, <u>J. Am. Chem. Soc.</u>, <u>91</u>, 5675 (1969);
 E. J. Corey, T. K. Schaaf, W. Huber, U. Koelliker and N. M. Weinshenker, <u>ibid</u>., <u>92</u>, 397 (1970);
 E. J. Corey, S. M. Albonico, U. Koelliker, T. K. Shaaf and R. K. Varma, <u>ibid</u>. <u>93</u>, 1491 (1971)
- 14. K. E. Pfitzner and J. G. Moffatt, <u>J. Am. Chem. Soc</u>., <u>85</u>, 3027 (1963), <u>ibid</u>., <u>87</u>, 5661, 5670 (1965).